119 research outputs found

    Tight Correlation Bounds for Circuits Between AC0 and TC0

    Get PDF

    Relaxed Local Correctability from Local Testing

    Full text link
    We cement the intuitive connection between relaxed local correctability and local testing by presenting a concrete framework for building a relaxed locally correctable code from any family of linear locally testable codes with sufficiently high rate. When instantiated using the locally testable codes of Dinur et al. (STOC 2022), this framework yields the first asymptotically good relaxed locally correctable and decodable codes with polylogarithmic query complexity, which finally closes the superpolynomial gap between query lower and upper bounds. Our construction combines high-rate locally testable codes of various sizes to produce a code that is locally testable at every scale: we can gradually "zoom in" to any desired codeword index, and a local tester at each step certifies that the next, smaller restriction of the input has low error. Our codes asymptotically inherit the rate and distance of any locally testable code used in the final step of the construction. Therefore, our technique also yields nonexplicit relaxed locally correctable codes with polylogarithmic query complexity that have rate and distance approaching the Gilbert-Varshamov bound.Comment: 18 page

    Pseudobinomiality of the Sticky Random Walk

    Get PDF

    A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, <it>Cassia tora </it>(<it>Senna tora</it>) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases.</p> <p>Methods</p> <p>The crushed seeds of <it>Cassia tora </it>were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools.</p> <p>Results</p> <p>The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml<sup>-1 </sup>seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD) of protease inhibitor (PI) was detected in dialyzed and SEC elute. The conidial germination of <it>Aspergillus flavus </it>was moderately inhibited (30%) by the dialyzed seed extract.</p> <p>Conclusions</p> <p><it>Cassia tora </it>seed extract has strong protease inhibitory activity against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases. The inhibitor in <it>Cassia tora </it>may attenuate microbial proteases and also might be used as phytoprotecting agent.</p

    Polymorphic Signature of the Anti-inflammatory Activity of 2,2′- {[1,2-Phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6- dimethylnicotinonitrile)

    Get PDF
    Weak noncovalent interactions are the basic forces in crystal engineering. Polymorphism in flexible molecules is very common, leading to the development of the crystals of same organic compounds with different medicinal and material properties. Crystallization of 2,2′- {[1,2-phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6-dimethylnicotinonitrile) by evaporation at room temperature from ethyl acetate and hexane and from methanol and ethyl acetate gave stable polymorphs 4a and 4b, respectively, while in acetic acid, it gave metastable polymorph 4c. The polymorphic behavior of the compound has been visualized through singlecrystal X-ray and Hirshfeld analysis. These polymorphs are tested for anti-inflammatory activity via the complete Freund’s adjuvant-induced rat paw model, and compounds have exhibited moderate activities. Studies of docking in the catalytic site of cyclooxygenase-2 were used to identify potential anti-inflammatory lead compounds. These results suggest that the supramolecular aggregate structure, which is formed in solution, influences the solid state structure and the biological activity obtained upon crystallization
    corecore